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Solution to Assignment 5

Section 7.1

8. We have ∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ ∫ b

a
|f | ≤

∫ b

a
M = M(b− a) .

Note that the first inequality comes from the Riemann sums after passing to limit. In the
next step we integrate a constant function, see Example 2.1 in Notes 2.

11. Suppose lim
n→∞

S(f, Ṗn) > lim
n→∞

S(f, Q̇n). Then we have

S(f) = lim
n→∞

S(f,Pn) ≥ lim
n→∞

S(f, Ṗn)

> lim
n→∞

S(f, Q̇n) ≥ lim
n→∞

S(f,Q) = S(f)

∴ S(f) 6= S(f), f /∈ R[a, b], by Integrability Criterion I.

14. (a)
1

3
(x2i−1 + xi−1xi−1 + x2i−1) ≤ q2i =

1

3
(x2i + xixi−1 + x2i−1) ≤

1

3
(x2i + xixi + x2i )

⇒ 0 ≤ x2i−1 ≤ q2i ≤ x2i ⇒ 0 ≤ xi−1 ≤ qi ≤ xi.

(b) Q(qi)(xi − xi−1) =
1

3
(x2i + xixi−1 + x2i−1)(xi − xi−1) =

1

3
(x3i − x3i−1).

(c) Here we let Ṗ be the partition P with tags qj . Then

S(Q; Ṗ ) =
n∑
i=1

Q(qi)(xi − xi−1) =
1

3

n∑
i=1

(x3i − x3i−1) =
1

3
(b3 − a3) .

(d) The function x 7→ x2 is integrable by Theorem 2.8(b) being the product of the linear
function x 7→ x (Example 2.4 in Notes 2). Take Ṗn be tagged partitions whose length
tending to 0. By letting n→∞, we see from (c) and Theorem 2.6 that∫ b

a
Q =

1

3
(b3 − a3) .

Note. By choosing the tag points zj carefully, we can use the same method to evaluate
the integral of xn for all positive powers. You are encouraged to work it out for n = 3.
After this effort, it is easy to guess which tags to choose in the general case.

15. Let P = {Ij := [xj−1, xj ]}nj=1 be a partition of f on [a, b].

Clearly, ∀ j, sup
Ij

f = sup
Ij+c

g, inf
Ij
f = inf

Ij+c
g. Hence S(f, P ) = S(g,Q), S(f, P ) = S(g,Q),

where Q := {Ij + c = [xj−1 + c, xj + c]}nj=1 is a partition of g on [a + c, b + c]. It is now

clear that S(g) = S(f) and S(g) = S(f), so by the first criterion, g is integrable and∫ b+c

a+c
g = S(g) = S(f) =

∫ b

a
f .

Note: This property is called the translation invariance of the Riemann integral.
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Section 7.2

18. If f ≡ 0, then result is trivial. Otherwise, since f is continuous on [a, b], there exists
x0 ∈ [a, b] s.t. sup f = f(x0) > 0. By continuity, for each small ε > 0, there is some δ such
that |f(x)− f(x0)| < ε, for all x ∈ [x0 − δ, x0 + δ] ∩ [a, b]. Hence

δ(f(x0)− ε)n <
∫

(x0−δ, x0+δ)∩[a,b]

fn ≤
∫ b

a
fn ≤

∫ b

a
f(x0)

n = f(x0)
n(b− a)

δ1/n(f(x0)− ε) < Mn =

(∫ b

a
fn
)1/n

≤ f(x0)(b− a)1/n

Note that limn→∞ a
1/n = 1 ∀ a > 0. Letting n→∞, by the squeeze theorem,

f(x0)− ε ≤ lim inf
n→∞

Mn ≤ lim sup
n→∞

Mn ≤ f(x0)

Letting ε→ 0 , limn→∞Mn = f(x0) = sup{f(x) : x ∈ [a, b]}.

19. Let Pn be the equal length partition of [−a, 0],−a = x0 < x1 < · · · < xn = 0, where
xj = −a+ ja/n, j = 0, · · · , n. Then we have∫ 0

−a
f = lim

n→∞

∑
j

f(xj)
a

n
,

see Theorem 2.6. On the other hand, −xj , j = 0, · · · , n, becomes a partition Qn on [0, a].
Therefore, ∫ a

0
f = lim

n→∞

∑
j

f(−xj)
a

n
.

Using f(−x) = f(x), we see that∑
j

f(−xj)
a

n
=
∑
j

f(xj)
a

n
,

hence ∫ 0

−a
f =

∫ a

0
f .

When f is odd, follow the same line but now using
∑

j f(−xj)
a

n
= −

∑
j f(xj)

a

n
to get

∫ 0

−a
f = −

∫ a

0
f .

Supplementary Exercises

Use the knowledge in Section 1, Notes 2.
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1. (a) Find the Darboux upper and lower sums for f . Explain why the Darboux upper sum
is not a Riemann sum.

(b) Use the integrability criterion to show that f is integrable and find its integral.

Solution.

(a) S(f, P ) =

4∑
j=1

sup
Ij

f ∆xj

=

(
sup

x∈[−1,−1/2]
−x

)(
−1

2
− (−1)

)
+

(
sup

x∈[−1/2,0]
−x

)(
0−

(
−1

2

))

+

(
sup

x∈[0,1/3]
−x+ 1

)(
1

3
− 0

)
+

(
sup

x∈[1/3,1]
−x+ 1

)(
1− 1

3

)
= (1)

(
−1

2
− (−1)

)
+

(
1

2

)(
0−

(
−1

2

))
+ (1)

(
1

3
− 0

)
+

(
2

3

)(
1− 1

3

)
=

55

36

S(f, P ) =

4∑
j=1

inf
Ij
f ∆xj

=

(
inf

x∈[−1,−1/2]
−x
)(
−1

2
− (−1)

)
+

(
inf

x∈[−1/2,0]
−x
)(

0−
(
−1

2

))
+

(
inf

x∈[0,1/3]
−x+ 1

)(
1

3
− 0

)
+

(
inf

x∈[1/3,1]
−x+ 1

)(
1− 1

3

)
=

(
1

2

)(
−1

2
− (−1)

)
+ 0

(
0−

(
−1

2

))
+

(
2

3

)(
1

3
− 0

)
+ 0

(
1− 1

3

)
=

17

36

The Darboux upper sum is not a Riemann sum because sup
[0,1/3]

f = 1 but we can’t find

any tag z ∈ [0, 1/3] so that f(z) = 1, because of the definition of f .

(b) Take Pn := {xi := −1 + i/n}2ni=0, hence ‖Pn‖ → 0.

Then S(f) = limS(f, Pn) = lim

(
n∑
i=1

(−xi−1) ∆xi +

2n∑
i=n+1

(−xi−1 + 1) ∆xi

)

= lim

(
2n∑
i=1

(−xi−1) ∆xi +
2n∑

i=n+1

∆xi

)

= lim

(
2n∑
i=1

(
1− i− 1

n

)(
1

n

)
+

2n∑
i=n+1

(
1

n

))
= 2− lim

1

n2

2n∑
i=1

(i− 1) + 1

= 3− lim
1

n2
(0 + (2n− 1))2n

2
= 3− lim

2n− 1

n
= 3− 2 = 1

and S(f) = limS(f,Pn) = lim

(
n∑
i=1

(−xi) ∆xi +
2n∑

i=n+1

(−xi + 1) ∆xi

)

= lim

(
2n∑
i=1

(−xi) ∆xi +
2n∑

i=n+1

∆xi

)
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= lim

(
2n∑
i=1

(
1− i

n

)(
1

n

)
+

2n∑
i=n+2

(
1

n

))
= 2− lim

1

n2

2n∑
i=1

i+ 1

= 3− lim
1

n2
(1 + 2n)2n

2
= 3− lim

1 + 2n

n
= 3− 2 = 1

Hence S(f) = 1 = S(f), by integrability criterion, f ∈ R[−1, 1] and

∫ 1

−1
f = 1

2. Prove Cauchy criterion for integrability: f is integrable on [a, b] if and only if for every
ε > 0, there exists δ > 0 such that for any two tagged partitions Ṗ , Q̇ with length less
than δ,

|S(f, Ṗ )− S(f, Q̇)| < ε,

holds. (This criterion is proved in the text; pretend that it is not there.)

Solution.

⇒) Since f ∈ R[a, b], ∃ L s.t. ∀ ε > 0, ∃ δ > 0,

| S(f, Ṗ )− L | < ε

2
, ∀ ‖P‖ < δ.

For another Q, ‖Q‖ < δ, we have a similar inequality.

| S(f, Ṗ )− S(f, Q̇) | ≤ | S(f, Ṗ )− L |+ | S(f, Q̇)− L | < ε

2
+
ε

2
= ε.

⇐) Let ε/2 > 0 and choose P = Q but different tags so that∣∣∣S(f, Ṗ )− S(f, P̈ )
∣∣∣ < ε

2
,

and ∣∣∣S(f, P )− S(f, Ṗ )
∣∣∣ < ε

4
,
∣∣∣S(f, P )− S(f, P̈ )

∣∣∣ < ε

4
.

As a result,∣∣S(f, P )− S(f, P )
∣∣ ≤ ∣∣∣S(f, P )− S(f, Ṗ )

∣∣∣+
∣∣∣S(f, Ṗ )− S(f, P̈ )

∣∣∣+
∣∣∣S(f, P )− S(f, P̈ )

∣∣∣
<

ε

4
+
ε

2
+
ε

4
= ε .

Therefore,
0 ≤ S(f)− S(f) ≤ S(f, P )− S(f, P ) ≤ ε .

Since ε can be arbitrarily small, we must have 0 = S(f)− S(f), so f is integrable by
the First Integrability Criterion.

3. Let f+(x) = max{f(x), 0} and f−(x) = −min{f(x), 0}. Show that f+ and f− are both
integrable when f is integrable on [a, b].

Solution. Use that relation f+(x) =
1

2

(
|f(x)|+ f(x)

)
, and f−(x) =

1

2

(
|f(x)|− f(x)

)
and

the integrability of |f |, see Theorem 2.8(d).

Alternatively, you may prove it by observing, for instance, f+ is the composition of f and
the continuous function g(z) = z, (z ≥ 0) and = 0, (z < 0). See no 7 below.
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4. Let g be differed from f by finitely many points. Show that g is integrable if f is integrable
over [a, b] and they have the same integral over [a, b].

Solution. For ε > 0, find a partition P so that∑
P

oscjf∆xj < ε/2 .

Let a1, · · · , am, be the points g and f differ. They belong to at most 2m many subintervals
of P . Hence ∑

j

oscjg∆xj ≤
∑
P

oscjf∆xj + 2M × 2m× ‖P‖ .

Now we can refine the length of P so small that 4Mm‖P‖ < ε/2. Then∑
j

oscjg∆xj < ε/2 + ε/2 = ε ,

so g is integrable. Now, let Pn with ‖Pn‖ → 0 and choose tags equal to none of these aj ’s.
Then S(g, Ṗn) = S(f, Ṗn), so their integrals are equal as n→∞.

Alternate proof. Let h = g − f so that h is equal to zero except at finitely many points.
By Theorem 2.11, h is integrable and its integral is equal to 0. Therefore, g = f + h is
integrable and ∫ b

a
g =

∫ b

a
(f + h) =

∫ b

a
f +

∫ b

a
h =

∫ b

a
f .

5. Let f be non-negative and continuous on [a, b]. Show that
∫ b
a f = 0 if and only if f ≡ 0.

Solution. It suffices to show if f is not identically zero, then its integral is positive.
Suppose there is some x0 ∈ [a, b] at which f(x0) = α > 0. By continuity, there is some
small δ > 0 such that f(x) ≥ α/2 for all x ∈ I ≡ [x0 − δ, x0 + δ] ∩ [a, b]. Therefore,∫ b

a
f ≥

∫
I
f ≥

∫
I

α

2
=
δα

2
> 0 .

6. Let f ∈ R[a, b] and g ∈ C1[c, d] where f [a, b] ⊂ [c, d]. Show that the composite g ◦ f ∈
R[a, b]. Here C1 means continuously differentiable.

Solution. By MVT,

g(f(x))− g(f(y)) = g′(c)(f(x)− f(y)) ,

where c is between f(x) and f(y). By assumption g′ is continuous here |g′| ≤M for some
M . We have ∑

j

oscjg ◦ f∆xi ≤M
∑
j

oscjf∆xj ,

and the desired conclusion comes from the second criterion.

Note: As a consequence of this property, the functions |f |, fn (n ≥ 1), ef , sin f, etc, are
all integrable when f is integrable.
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7. (Optional). Let f ∈ R[a, b] and g ∈ C[c, d] where f [a, b] ⊂ [c, d]. Show that the composite
g ◦ f ∈ R[a, b]. Hint: For ε > 0, fix δ0 such that |g(z1) − g(z2)| < ε for |z1 − z2| < δ0.
For ε, δ0 > 0, there exists a partition P such that

∑
j oscIjf∆xj < εδ0. Then apply the

Second Criterion.

Solution. Given ε > 0, we want to find a partition P such that∑
j

oscIjΦ(f(x))∆xj < ε .

Indeed, letting M = sup |f |, Φ is uniformly continuous on [−M,M ]. Therefore, there
exists some δ such that |Φ(z1)− Φ(z2)| < ε whenever |z1 − z2| < δ, z1, z2 ∈ [−M,M ]. For
ε1 = εδ > 0, by the Second Criterion we can find a partition P on [a, b] such that∑

j

oscIjf∆xj < ε1 .

On any one of those subintervals over which oscf is less than δ, we have osc Φ ◦ f is less
than ε. On the other hand,

δ
∑
j

′∆xj ≤
∑
j

′oscIjf∆xj < ε1 ,

where
∑′ denotes the summation over those subintervals the osc of f is greater than or

equal to δ. Therefore, ∑
j

′∆xj ≤
ε1
δ

= ε .

Putting things together, we have∑
j

osc Φ ◦ f∆xj =
∑
j

′oscΦ ◦ f∆xj +
∑
j

′′oscΦ ◦ f∆xj ≤ C1ε+ (b− a)ε ,

where
∑′′ denotes the summation over those subintervals where the osc of f is less than

δ and C1 is the oscillation of Φ over [−M,M ]. Now we can adjust (C1 + (b− a))ε to ε.

Note: This result is more general than the previous one.

8. Let f be a continuous function on [a, b] and g a nonnegative continuous function on the
same interval. Prove the mean-value theorem for integral:∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx,

for some c ∈ [a, b].

Solution. The case is trivial when g ≡ 0. So we assume that g > 0 somewhere so that its
integral is positive over [a, b]. Then

∫ b
a g(x) dx > 0. Let M = sup f, m = inf f . We have

m

∫ b

a
f ≤

∫ b

a
fg ≤M

∫ b

a
f ,

implies that ∫ b

a
fg
/∫ b

a
g ∈ [m,M ] .
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As f is continuous, its range f([a, b]) = [m,M ]. Therefore, there exists some c ∈ [a, b] such
that

f(c) =

∫ b

a
fg
/∫ b

a
g .

Note. Here we have used the fact that the image of an interval under a continuous function
is again an interval. See Theorem 5.3.9 in [BS].


