Solution to Assignment 5

Section 7.1

8. We have

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f| \leq \int_{a}^{b} M = M(b-a)$$

Note that the first inequality comes from the Riemann sums after passing to limit. In the next step we integrate a constant function, see Example 2.1 in Notes 2.

11. Suppose $\lim_{n\to\infty} S(f, \dot{\mathcal{P}}_n) > \lim_{n\to\infty} S(f, \dot{\mathcal{Q}}_n)$. Then we have

$$\overline{S}(f) = \lim_{n \to \infty} \overline{S}(f, \mathcal{P}_n) \ge \lim_{n \to \infty} S(f, \mathcal{P}_n)$$
$$> \lim_{n \to \infty} S(f, \dot{\mathcal{Q}}_n) \ge \lim_{n \to \infty} \underline{S}(f, \mathcal{Q}) = \underline{S}(f)$$

 $\therefore \overline{S}(f) \neq \underline{S}(f), f \notin \mathcal{R}[a, b]$, by Integrability Criterion I.

14. (a)
$$\frac{1}{3}(x_{i-1}^2 + x_{i-1}x_{i-1} + x_{i-1}^2) \le q_i^2 = \frac{1}{3}(x_i^2 + x_ix_{i-1} + x_{i-1}^2) \le \frac{1}{3}(x_i^2 + x_ix_i + x_i^2)$$
$$\Rightarrow \quad 0 \le x_{i-1}^2 \le q_i^2 \le x_i^2 \quad \Rightarrow \quad 0 \le x_{i-1} \le q_i \le x_i.$$

(b)
$$Q(q_i)(x_i - x_{i-1}) = \frac{1}{3}(x_i^2 + x_i x_{i-1} + x_{i-1}^2)(x_i - x_{i-1}) = \frac{1}{3}(x_i^3 - x_{i-1}^3).$$

(c) Here we let \dot{P} be the partition P with tags q_i . Then

$$S(Q; \dot{P}) = \sum_{i=1}^{n} Q(q_i)(x_i - x_{i-1}) = \frac{1}{3} \sum_{i=1}^{n} (x_i^3 - x_{i-1}^3) = \frac{1}{3} (b^3 - a^3) .$$

(d) The function $x \mapsto x^2$ is integrable by Theorem 2.8(b) being the product of the linear function $x \mapsto x$ (Example 2.4 in Notes 2). Take \dot{P}_n be tagged partitions whose length tending to 0. By letting $n \to \infty$, we see from (c) and Theorem 2.6 that

$$\int_{a}^{b} Q = \frac{1}{3}(b^3 - a^3) \; .$$

Note. By choosing the tag points z_j carefully, we can use the same method to evaluate the integral of x^n for all positive powers. You are encouraged to work it out for n = 3. After this effort, it is easy to guess which tags to choose in the general case.

15. Let $P = \{I_j := [x_{j-1}, x_j]\}_{j=1}^n$ be a partition of f on [a, b]. Clearly, $\forall j$, $\sup_{I_j} f = \sup_{I_j+c} g$, $\inf_{I_j} f = \inf_{I_j+c} g$. Hence $\overline{S}(f, P) = \overline{S}(g, Q)$, $\underline{S}(f, P) = \underline{S}(g, Q)$, where $Q := \{I_j + c = [x_{j-1} + c, x_j + c]\}_{j=1}^n$ is a partition of g on [a + c, b + c]. It is now clear that $\overline{S}(g) = \overline{S}(f)$ and $\underline{S}(g) = \underline{S}(f)$, so by the first criterion, g is integrable and

$$\int_{a+c}^{b+c} g = \overline{S}(g) = \overline{S}(f) = \int_{a}^{b} f \; .$$

Note: This property is called the translation invariance of the Riemann integral.

Section 7.2

18. If $f \equiv 0$, then result is trivial. Otherwise, since f is continuous on [a, b], there exists $x_0 \in [a, b]$ s.t. $\sup f = f(x_0) > 0$. By continuity, for each small $\varepsilon > 0$, there is some δ such that $|f(x) - f(x_0)| < \varepsilon$, for all $x \in [x_0 - \delta, x_0 + \delta] \cap [a, b]$. Hence

$$\delta(f(x_0) - \varepsilon)^n < \int_{(x_0 - \delta, x_0 + \delta) \cap [a, b]} f^n \le \int_a^b f^n \le \int_a^b f(x_0)^n = f(x_0)^n (b - a)$$

$$\delta^{1/n}(f(x_0) - \varepsilon) < M_n = \left(\int_a^b f^n\right)^{1/n} \le f(x_0)(b-a)^{1/n}$$

Note that $\lim_{n\to\infty} a^{1/n} = 1 \ \forall \ a > 0$. Letting $n \to \infty$, by the squeeze theorem,

$$f(x_0) - \varepsilon \le \liminf_{n \to \infty} M_n \le \limsup_{n \to \infty} M_n \le f(x_0)$$

Letting $\varepsilon \to 0$, $\lim_{n \to \infty} M_n = f(x_0) = \sup\{f(x) : x \in [a, b]\}.$

19. Let P_n be the equal length partition of $[-a, 0], -a = x_0 < x_1 < \cdots < x_n = 0$, where $x_j = -a + ja/n, j = 0, \cdots, n$. Then we have

$$\int_{-a}^{0} f = \lim_{n \to \infty} \sum_{j} f(x_j) \frac{a}{n} ,$$

see Theorem 2.6. On the other hand, $-x_j, j = 0, \dots, n$, becomes a partition Q_n on [0, a]. Therefore,

$$\int_0^a f = \lim_{n \to \infty} \sum_j f(-x_j) \frac{a}{n} \; .$$

Using f(-x) = f(x), we see that

$$\sum_{j} f(-x_j) \frac{a}{n} = \sum_{j} f(x_j) \frac{a}{n} ,$$

hence

$$\int_{-a}^0 f = \int_0^a f \; .$$

When f is odd, follow the same line but now using $\sum_j f(-x_j) \frac{a}{n} = -\sum_j f(x_j) \frac{a}{n}$ to get

$$\int_{-a}^{0} f = -\int_{0}^{a} f \; .$$

Supplementary Exercises

Use the knowledge in Section 1, Notes 2.

1. (a) Find the Darboux upper and lower sums for f. Explain why the Darboux upper sum is not a Riemann sum.

(b) Use the integrability criterion to show that f is integrable and find its integral. Solution.

$$\begin{aligned} \text{(a)} \ \overline{S}(f,P) &= \sum_{j=1}^{4} \sup_{I_j} f \ \Delta x_j \\ &= \left(\sup_{x \in [-1,-1/2]} -x \right) \left(-\frac{1}{2} - (-1) \right) + \left(\sup_{x \in [-1/2,0]} -x \right) \left(0 - \left(-\frac{1}{2} \right) \right) \\ &+ \left(\sup_{x \in [0,1/3]} -x + 1 \right) \left(\frac{1}{3} - 0 \right) + \left(\sup_{x \in [1/3,1]} -x + 1 \right) \left(1 - \frac{1}{3} \right) \\ &= (1) \left(-\frac{1}{2} - (-1) \right) + \left(\frac{1}{2} \right) \left(0 - \left(-\frac{1}{2} \right) \right) + (1) \left(\frac{1}{3} - 0 \right) + \left(\frac{2}{3} \right) \left(1 - \frac{1}{3} \right) \\ &= \frac{55}{36} \\ \underline{S}(f,P) &= \sum_{j=1}^{4} \inf_{I_j} f \ \Delta x_j \\ &= \left(\inf_{x \in [-1,-1/2]} -x \right) \left(-\frac{1}{2} - (-1) \right) + \left(\inf_{x \in [-1/2,0]} -x \right) \left(0 - \left(-\frac{1}{2} \right) \right) \\ &+ \left(\inf_{x \in [0,1/3]} -x + 1 \right) \left(\frac{1}{3} - 0 \right) + \left(\inf_{x \in [1/3,1]} -x + 1 \right) \left(1 - \frac{1}{3} \right) \\ &= \left(\frac{1}{2} \right) \left(-\frac{1}{2} - (-1) \right) + 0 \left(0 - \left(-\frac{1}{2} \right) \right) \\ &+ \left(\frac{2}{3} \right) \left(\frac{1}{3} - 0 \right) + 0 \left(1 - \frac{1}{3} \right) \\ &= \frac{17}{36} \end{aligned}$$

The Darboux upper sum is not a Riemann sum because $\sup_{[0,1/3]} f = 1$ but we can't find any tag $z \in [0, 1/3]$ so that f(z) = 1, because of the definition of f.

(b) Take
$$P_n := \{x_i := -1 + i/n\}_{i=0}^{2n}$$
, hence $||P_n|| \to 0$.
Then $\overline{S}(f) = \lim \overline{S}(f, P_n) = \lim \left(\sum_{i=1}^n (-x_{i-1}) \Delta x_i + \sum_{i=n+1}^{2n} (-x_{i-1}+1) \Delta x_i\right)$
 $= \lim \left(\sum_{i=1}^{2n} (-x_{i-1}) \Delta x_i + \sum_{i=n+1}^{2n} \Delta x_i\right)$
 $= \lim \left(\sum_{i=1}^{2n} \left(1 - \frac{i-1}{n}\right) \left(\frac{1}{n}\right) + \sum_{i=n+1}^{2n} \left(\frac{1}{n}\right)\right) = 2 - \lim \frac{1}{n^2} \sum_{i=1}^{2n} (i-1) + 1$
 $= 3 - \lim \frac{1}{n^2} \frac{(0 + (2n-1))2n}{2} = 3 - \lim \frac{2n-1}{n} = 3 - 2 = 1$
and $\underline{S}(f) = \lim \underline{S}(f, \mathcal{P}_n) = \lim \left(\sum_{i=1}^n (-x_i) \Delta x_i + \sum_{i=n+1}^{2n} (-x_i+1) \Delta x_i\right)$
 $= \lim \left(\sum_{i=1}^{2n} (-x_i) \Delta x_i + \sum_{i=n+1}^{2n} \Delta x_i\right)$

$$= \lim \left(\sum_{i=1}^{2n} \left(1 - \frac{i}{n} \right) \left(\frac{1}{n} \right) + \sum_{i=n+2}^{2n} \left(\frac{1}{n} \right) \right) = 2 - \lim \frac{1}{n^2} \sum_{i=1}^{2n} i + 1$$
$$= 3 - \lim \frac{1}{n^2} \frac{(1+2n)2n}{2} = 3 - \lim \frac{1+2n}{n} = 3 - 2 = 1$$
Hence $\overline{S}(f) = 1 = \underline{S}(f)$, by integrability criterion, $f \in \mathcal{R}[-1,1]$ and $\int_{-1}^{1} f = 1$

2. Prove Cauchy criterion for integrability: f is integrable on [a, b] if and only if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any two tagged partitions \dot{P}, \dot{Q} with length less than δ ,

$$|S(f, \dot{P}) - S(f, \dot{Q})| < \varepsilon,$$

holds. (This criterion is proved in the text; pretend that it is not there.) Solution.

 $\Rightarrow) \text{ Since } f \in R[a, b], \exists L \text{ s.t. } \forall \varepsilon > 0, \exists \delta > 0,$

$$|S(f,\dot{P}) - L| < \frac{\varepsilon}{2}, \quad \forall ||P|| < \delta.$$

For another Q, $||Q|| < \delta$, we have a similar inequality.

$$|S(f,\dot{P}) - S(f,\dot{Q})| \le |S(f,\dot{P}) - L| + |S(f,\dot{Q}) - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 \Leftarrow) Let $\varepsilon/2 > 0$ and choose P = Q but different tags so that

$$\left|S(f,\dot{P}) - S(f,\ddot{P})\right| < \frac{\varepsilon}{2}$$

and

$$\left|\overline{S}(f,P) - S(f,\dot{P})\right| < \frac{\varepsilon}{4}, \quad \left|\underline{S}(f,P) - S(f,\ddot{P})\right| < \frac{\varepsilon}{4}$$

As a result,

$$\begin{split} \left|\overline{S}(f,P) - \underline{S}(f,P)\right| &\leq \left|\overline{S}(f,P) - S(f,\dot{P})\right| + \left|S(f,\dot{P}) - S(f,\ddot{P})\right| + \left|\underline{S}(f,P) - S(f,\ddot{P})\right| \\ &< \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon \ . \end{split}$$

Therefore,

$$0 \le \overline{S}(f) - \underline{S}(f) \le \overline{S}(f, P) - \underline{S}(f, P) \le \varepsilon .$$

Since ε can be arbitrarily small, we must have $0 = \overline{S}(f) - \underline{S}(f)$, so f is integrable by the First Integrability Criterion.

3. Let $f_+(x) = \max\{f(x), 0\}$ and $f_-(x) = -\min\{f(x), 0\}$. Show that f_+ and f_- are both integrable when f is integrable on [a, b].

Solution. Use that relation $f_+(x) = \frac{1}{2}(|f(x)| + f(x))$, and $f_-(x) = \frac{1}{2}(|f(x)| - f(x))$ and the integrability of |f|, see Theorem 2.8(d).

Alternatively, you may prove it by observing, for instance, f_+ is the composition of f and the continuous function $g(z) = z, (z \ge 0)$ and = 0, (z < 0). See no 7 below.

4. Let g be differed from f by finitely many points. Show that g is integrable if f is integrable over [a, b] and they have the same integral over [a, b].

Solution. For $\varepsilon > 0$, find a partition P so that

$$\sum_{P} \mathrm{osc}_j f \Delta x_j < \varepsilon/2$$

Let a_1, \dots, a_m , be the points g and f differ. They belong to at most 2m many subintervals of P. Hence

$$\sum_{j} \operatorname{osc}_{j} g \Delta x_{j} \leq \sum_{P} \operatorname{osc}_{j} f \Delta x_{j} + 2M \times 2m \times \|P\| .$$

Now we can refine the length of P so small that $4Mm\|P\| < \varepsilon/2$. Then

$$\sum_j \mathrm{osc}_j g \Delta x_j < \varepsilon/2 + \varepsilon/2 = \varepsilon \ ,$$

so g is integrable. Now, let P_n with $||P_n|| \to 0$ and choose tags equal to none of these a_j 's. Then $S(g, \dot{P}_n) = S(f, \dot{P}_n)$, so their integrals are equal as $n \to \infty$.

Alternate proof. Let h = g - f so that h is equal to zero except at finitely many points. By Theorem 2.11, h is integrable and its integral is equal to 0. Therefore, g = f + h is integrable and

$$\int_{a}^{b} g = \int_{a}^{b} (f+h) = \int_{a}^{b} f + \int_{a}^{b} h = \int_{a}^{b} f .$$

5. Let f be non-negative and continuous on [a, b]. Show that $\int_a^b f = 0$ if and only if $f \equiv 0$.

Solution. It suffices to show if f is not identically zero, then its integral is positive. Suppose there is some $x_0 \in [a, b]$ at which $f(x_0) = \alpha > 0$. By continuity, there is some small $\delta > 0$ such that $f(x) \ge \alpha/2$ for all $x \in I \equiv [x_0 - \delta, x_0 + \delta] \cap [a, b]$. Therefore,

$$\int_{a}^{b} f \ge \int_{I} f \ge \int_{I} \frac{\alpha}{2} = \frac{\delta \alpha}{2} > 0 \ .$$

6. Let $f \in \mathcal{R}[a, b]$ and $g \in C^1[c, d]$ where $f[a, b] \subset [c, d]$. Show that the composite $g \circ f \in \mathcal{R}[a, b]$. Here C^1 means continuously differentiable.

Solution. By MVT,

$$g(f(x)) - g(f(y)) = g'(c)(f(x) - f(y))$$
,

where c is between f(x) and f(y). By assumption g' is continuous here $|g'| \leq M$ for some M. We have _____

$$\sum_{j} \operatorname{osc}_{j} g \circ f \Delta x_{i} \leq M \sum_{j} \operatorname{osc}_{j} f \Delta x_{j} ,$$

and the desired conclusion comes from the second criterion.

Note: As a consequence of this property, the functions $|f|, f^n \ (n \ge 1), e^f, \sin f$, etc, are all integrable when f is integrable.

7. (Optional). Let $f \in \mathcal{R}[a, b]$ and $g \in C[c, d]$ where $f[a, b] \subset [c, d]$. Show that the composite $g \circ f \in \mathcal{R}[a, b]$. Hint: For $\varepsilon > 0$, fix δ_0 such that $|g(z_1) - g(z_2)| < \varepsilon$ for $|z_1 - z_2| < \delta_0$. For ε , $\delta_0 > 0$, there exists a partition P such that $\sum_j osc_{I_j} f \Delta x_j < \varepsilon \delta_0$. Then apply the Second Criterion.

Solution. Given $\varepsilon > 0$, we want to find a partition P such that

$$\sum_{j} \operatorname{osc}_{I_j} \Phi(f(x)) \Delta x_j < \varepsilon \; .$$

Indeed, letting $M = \sup |f|$, Φ is uniformly continuous on [-M, M]. Therefore, there exists some δ such that $|\Phi(z_1) - \Phi(z_2)| < \varepsilon$ whenever $|z_1 - z_2| < \delta, z_1, z_2 \in [-M, M]$. For $\varepsilon_1 = \varepsilon \delta > 0$, by the Second Criterion we can find a partition P on [a, b] such that

$$\sum_j \operatorname{osc}_{I_j} f \Delta x_j < \varepsilon_1 \; .$$

On any one of those subintervals over which $\operatorname{osc} f$ is less than δ , we have $\operatorname{osc} \Phi \circ f$ is less than ε . On the other hand,

$$\delta \sum_{j} \Delta x_{j} \leq \sum_{j} \Delta x_{j} < \varepsilon_{1} ,$$

where \sum' denotes the summation over those subintervals the osc of f is greater than or equal to δ . Therefore,

$$\sum_{j} \ '\Delta x_{j} \leq \frac{\varepsilon_{1}}{\delta} = \varepsilon \; .$$

Putting things together, we have

$$\sum_{j} \operatorname{osc} \Phi \circ f \Delta x_{j} = \sum_{j} ' \operatorname{osc} \Phi \circ f \Delta x_{j} + \sum_{j} '' \operatorname{osc} \Phi \circ f \Delta x_{j} \leq C_{1} \varepsilon + (b-a) \varepsilon ,$$

where \sum'' denotes the summation over those subintervals where the osc of f is less than δ and C_1 is the oscillation of Φ over [-M, M]. Now we can adjust $(C_1 + (b - a))\varepsilon$ to ε . Note: This result is more general than the previous one.

8. Let f be a continuous function on [a, b] and g a nonnegative continuous function on the same interval. Prove the mean-value theorem for integral:

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx,$$

for some $c \in [a, b]$.

Solution. The case is trivial when $g \equiv 0$. So we assume that g > 0 somewhere so that its integral is positive over [a, b]. Then $\int_a^b g(x) \, dx > 0$. Let $M = \sup f$, $m = \inf f$. We have

$$m\int_a^b f \le \int_a^b fg \le M\int_a^b f$$
,

implies that

$$\int_{a}^{b} fg \Big/ \int_{a}^{b} g \in [m, M] \; .$$

As f is continuous, its range f([a, b]) = [m, M]. Therefore, there exists some $c \in [a, b]$ such that

$$f(c) = \int_a^b fg \Big/ \int_a^b g \; .$$

Note. Here we have used the fact that the image of an interval under a continuous function is again an interval. See Theorem 5.3.9 in [BS].